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Exploring the structural diversity of a chemical system rests on three pillars.

First, there is the global exploration of its energy landscape that allows one to

predict which crystalline modifications can exist in a chemical system at a given

temperature and pressure. Next, there is the development of new synthesis

methods in solid-state chemistry, which require only very low activation energies

such that even metastable modifications corresponding, for example, to minima

on the landscape surrounded by low barriers can be realized. Finally, there is the

theoretical design of optimal synthesis routes, again based on the study of the

system’s energy landscape. In this paper the energy landscape approach to the

prediction of stable and metastable compounds as a function of temperature and

pressure is presented, with a particular focus on possible phase transitions.

Furthermore, several examples are presented, where such predicted compounds

were subsequently successfully synthesized, often employing a newly developed

synthesis method, low-temperature atom-beam deposition.

1. Introduction

Although every configuration of a chemical system of N atoms

is mathematically represented by a point in a 3N-dimensional

Euclidean space, the corresponding atom arrangement

necessarily resides in our familiar three-dimensional Eucli-

dean space. This fact places severe restrictions on the math-

ematical transformations that can be applied to the system,

e.g. limiting the number of possible space-group types to only

230. Combining these restrictions with some empirical

knowledge about the size of the atoms, or their preferred

bonding patterns, has already enabled us to rationalize the

structures of known chemical compounds, and even to extra-

polate to not yet realized configurations. Along such rather

traditional approaches one matches, for example, three-

dimensional space-group symmetries, and the Wyckoff

multiplicities implied, with chemical composition, cell contents

and preferred coordination numbers (Brown & Shannon,

1973; O’Keeffe & Hyde, 1984, 1985; Brown, 1992; Hansen,

1993) or with the properties of packing schemes of spheres

(Müller, 1992, 1998). A quite independent set of procedures

can be applied to those classes of chemical systems where the

presence of certain uniform bonding geometries or rigid

building blocks leads to well defined connectivities among the

atoms and thus to topological restrictions on the feasible

structures in these systems. The most stringent of such deri-

vations has been the (correct) prediction of all possible

alkanes and their isomers by Polya using graph theory (Polya,

1936). A similar graph-theoretical representation of the

structure systematics of silicates has been suggested by Klee,

Hahn and co-workers (Chung et al., 1984; Klee et al., 1997),

and most recently it has been shown that the full structural

diversity of, for example, zeolite structures can be accessed by

applying graph theory (Treacy et al., 1997; Winkler et al., 1999;

Strong et al., 2004; Szu & Hartley, 1987) or tiling procedures in

three dimensions (Heesch, 1934; Delgado-Friedrichs et al.,

1999, 2007; Foster et al., 2004; Thomas & Klinowski, 2007).

All these approaches are based on using geometrical and/or

topological constraints on feasible configurations to allow a

complete mathematical enumeration. However, this leads to

two intrinsic problems. For one, the procedure implies that

there is a close correspondence between a structure obeying

the geometrical restrictions and it being kinetically stable,

chemically relevant and a reasonable modification. Since the

number of mathematically permitted structures grows expo-

nentially with any relaxation of the topological restrictions,

it is clear that balancing the demands of computational

resources, chemical relevance and completeness of the

resulting set of structures is highly non-trivial. However, at the

heart of this problem lies the use of geometrical and topolo-

gical proxies instead of the true physical quantity determining

the stability of chemical compounds, and thus their structures:

the free energy of the system under investigation and its

tendency to minimize, together with the energetic and

entropic barriers surrounding the minimum configurations. In

our approach to predicting chemical compounds capable of

existence and their structures, we therefore focus on the

energies associated with the configurations (Schön & Jansen,

1996, 2001, 2009; Jansen, 2002, 2008; Schön, Doll & Jansen,

2010). Quite generally, this representation of the multitude of



all known and still unknown chemical compounds on an

energy landscape points the way to a deductive treatment of

chemistry, quite in contrast to the inductive approach

historically followed in this discipline (Jansen & Schön, 2006;

Jansen, 2008).

A rather simple scenario results if one considers the

hypothetic conditions of T = 0 K and p = 0 GPa (and

suppresses the zero-point vibrations). Then each minimum of

the continuous (hyper)surface of potential energy corre-

sponds to a kinetically (infinitely) stable configuration, and

vice versa. At finite temperature and pressure, i.e. at realistic

thermodynamic conditions, each individual minimum becomes

metastable, in principle. The relevant quantitity is now the

locally ergodic region that can encompass one or many local

minima, which corresponds to a macroscopic thermodynamic

state. Depending on the thermodynamic boundary conditions

applied, one of these regions corresponds to the thermo-

dynamically stable state of the system under consideration,

while the remaining regions represent metastable ones, exhi-

biting a wide spread of lifetimes.

Such physically realistic energy landscapes, exhibiting

numerous locally ergodic regions, offer a firm foundation for

dealing with virtually all aspects of chemistry on a rational

basis. Since the sufficient and necessary precondition for any

chemical configuration to exist is that it belongs to such a

region, no matter whether one deals with a molecule, a liquid,

a crystalline compound or an amorphous solid, all the diverse

fields of preparative chemistry can be dealt with on a unified

footing.

In our approach to the rational planning of solid-state and

materials synthesis, we computationally search the respective

energy landscapes for (meta)stable compounds and explore

the barrier structures around the relevant local minima. For

a given composition, the most stable predicted structure

candidates and the lowest connecting barrier heights are

displayed in a tree graph presentation. At a first glance, the

enormous wealth and diversity of the candidates predicted

appears to indicate an extreme (seemingly unrealistic)

complexity of chemical matter. However, applying appro-

priate experimental tools has by now enabled us to realize

parts of the tree graphs of the lithium halides and of the

elusive sodium nitride, including almost all of its predicted

polymorphs, many years after the predictions were published.

In this report we give a brief outline of our conception,

including a summary of the basic energy landscape concepts

and a short description of the algorithms we employ, and

demonstrate the feasibility of our approach by presenting not

only theoretical structure predictions but also examples of

their experimental verification via successful syntheses of

predicted compounds.

2. Energy landscape approach to the prediction of
(meta)stable compounds and their phase diagrams

The starting point for any prediction of (meta)stable

compounds and their phase diagrams without recourse to

experimental information is the representation of the

chemical system at hand as a collection of N atoms via a 3N-

dimensional position vector, R = ðr1; . . . ; rNÞ [plus a 3N-

dimensional momentum vector, P = ðp1; . . . ; pNÞ], and its

(potential) energy EðRÞ. This energy hypersurface over the

3N-dimensional space of all atom arrangements is commonly

denoted as the energy landscape of the chemical system

(Schön & Jansen, 1996, 2001; Jansen, 2002, 2008; Goldstein,

1969; Stillinger & Weber, 1982; Wales, 2003).

The crucial step in going from the classical mechanical

description above to the thermodynamic one is the determi-

nation of the so-called locally ergodic regions on the energy

landscape (Schön & Jansen, 2001; Schön et al., 2003). For a

given temperature T, a subset R of the configuration space is

called locally ergodic on the observation timescale tobs if the

time �eqðR; TÞ it takes for the system to equilibrate withinR is

much shorter than tobs, while the time �escðR; TÞ it takes for

the system to leave the region R, the so-called escape time, is

much larger than tobs,

�escðR; TÞ � tobs � �eqðR; TÞ: ð1Þ

If this holds true then the ergodic theorem tells us that we can

replace the time averages of observables O½RðtÞ;PðtÞ� along a

trajectory of length tobs = t2 � t1,

hOitobs
¼

1

tobs

Z t2

t1

O Rðt 0Þ;Pðt 0Þ½ � dt 0; ð2Þ

inside the locally ergodic region R by the (Boltzmann)

ensemble average of this observable,

hOiensðTÞ ¼

R
OðP;RÞ exp �EðP;RÞ=kBT

� �
dP dRR

exp �EðP;RÞ=kBT
� �

dP dR
; ð3Þ

restricted to the region R,

hOitobs
� hOiensðTÞ

��� ��� < a: ð4Þ

Of course, this ‘equality’ holds only within an accuracy a, since

only local and not global ergodicity is asserted. In particular,

we can compute for every locally ergodic region Ri the local

free energy,

FðRi;TÞ ¼ �kBT ln ZðRi;TÞ

¼ �kBT ln
P
j2Ri

exp½�Eð jÞ=kBT�; ð5Þ

and thus apply the usual laws of thermodynamics to the system

as long as it remains within the region Ri .

For any given observation timescale tobs , the configuration

space of the chemical system is split into a large number of

disjoint locally ergodic regions, with the remainder of the

configuration space consisting of transition regions connecting

the locally ergodic regions. Each such region corresponds to a

kinetically stable compound of the chemical system on the

timescale of observation.

Quite generally, one notes that at low temperatures the

escape times from the locally ergodic regions tend to follow

Arrhenius’ law and are therefore controlled by energetic
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barriers on the energy landscape. Thus, at very low tempera-

tures individual local minima1 of the energy landscape are

locally ergodic and their local free energies are determined

by the energy of the minimum plus the contribution of the

vibrations about these minima. Usually, the regions with the

lowest free energy correspond to crystalline modifications of

the system, while structures containing defects are also asso-

ciated with local minima but with higher energies. At elevated

temperatures and on sufficiently long timescales, locally

ergodic regions will typically encompass many local minima.

An important class is formed by locally ergodic regions that

contain all the local minima associated with, for example, the

rotation of complex anions in a solid or the oscillation of

individual atoms in double-well potentials, or the many local

minima representing possible atom arrangements belonging to

solid-solution phases.

Constructing an equilibrium phase diagram from first

principles thus involves as a first step the determination of the

locally ergodic regions on the energy landscape of a chemical

system as a function of temperature, pressure and composi-

tion, for observational timescales of interest. Next, the local

free energies of the corresponding (meta)stable compounds

and phases are computed and by minimization of these free

energies the thermodynamically stable phase is obtained.

To achieve this goal, we need to identify and analyze the

central quantities of interest that control the dynamics on

energy landscapes of chemical systems. These include special

points on the landscape (Quandt, 2008) such as local minima

and saddle points (in particular those connecting pairs of

minima), special regions such as locally ergodic regions (Schön

& Jansen, 2001), transition regions (Schön et al., 2001a), local

densities of states, and the flow of probability on the landscape

with the corresponding barrier landscape consisting of

(generalized) barriers (Schön et al., 2003) such as energetic,

entropic and kinetic barriers (Hoffmann & Schön, 2005).

Finally, visualization plays an important role in the analysis of

the properties of energy landscapes by representing the high-

dimensional complex multi-minima landscape in a simplified

fashion, where, in particular, graph-based representations

(Hoffmann & Sibani, 1988; Sibani et al., 1993; Schön et al.,

1996; Becker & Karplus, 1997; Heuer, 1997; Wales et al., 1998;

Krivov & Karplus, 2002; Komatsuzaki et al., 2005) and plots of,

for example, the energy as a function of some characteristic

order parameter or some reduced set of relevant coordinates

(Gower, 1966; Abagyan & Argos, 1992; Amadei et al., 1993;

Troyer & Cohen, 1995; Becker, 1997; Das et al., 2006) play an

important role (for more information, see e.g. Schön & Jansen,

2001, 2009). All these quantities are of interest when trying to

predict not-yet-synthesized solid compounds capable of exis-

tence, and the related phase diagrams. The number of methods

that have been developed to determine these crucial features

of energy landscapes is very large; we refer to the literature for

reviews and more detail of the algorithms involved (Schön &

Jansen, 2001, 2009).

3. Global landscape exploration techniques based on
random walks

We have employed a variety of exploration techniques to

identify local minima and locally ergodic regions in general,

and to investigate the barrier structure of the landscape of

chemical systems. All the algorithms used are based on

random walks: stochastic simulated annealing and its variants,

the threshold algorithm, the deluge algorithm, and the ergo-

dicity search algorithm. In general, algorithms that employ

random walkers to explore energy landscapes are based on

the following four fundamental features: (i) a set of random

walkers that can be (a) non-interacting, (b) interacting and/or

(c) learning from each other; (ii) a configuration (or solution)

space S = fxg together with an energy (or cost) function EðxÞ

that can be unchanged or evolving as the algorithm proceeds;

(iii) a moveclass (or neighborhood)NðxÞ which gives for each

state x the neighboring states that can be accessed with a

certain probability by the random walker if it is at state x. This

moveclass can remain unchanged or evolve as the algorithm

proceeds; (iv) an acceptance criterion according to which the

walker makes the move to the neighbor state selected. Again,

this criterion can (and often does) vary during the run.

The prototype of such an algorithm is the so-called Monte

Carlo Metropolis algorithm (Metropolis et al., 1953) describing

a single walker at a constant temperature T, which employs

the Metropolis acceptance criterion. At the beginning, a

starting point x0 for the walker is chosen, either at random or

according to some deterministic scheme. The move from the

ith to the ðiþ 1Þth position of the walker takes place as

follows. From the neighborhood NðxiÞ of the current state xi

we select, at random with probability according to the

moveclass, a target state xtarget 2 N ðxiÞ. Next, we compute

the difference in energy between these two states,

EðxtargetÞ � EðxiÞ. If Etarget � Ei , the move is accepted. If

Etarget > Ei , a random number 0 � r � 1 is generated. If now

exp �ðEtarget � EiÞ=T
� �

� r; ð6Þ

then the move is accepted, i.e. xiþ1 = xtarget. Otherwise, the

walker stays at xi , i.e. xiþ1 = xi . This procedure is repeated until

the maximal number of steps Nmax has been performed, and

the full trajectory fx0; x1; . . . ; xNmax
g has been obtained.

Under certain conditions the trajectory covers the space S

ergodically, but for complex multi-minima systems Nmax is

usually much too short to yield global ergodicity, especially if

T is varied or the landscape evolves during the run (Geman &

Geman, 1984; Schön, 1997; Salamon et al., 2002).

3.1. Global optimization techniques: simulated annealing
and related algorithms

The most common generalization of the Metropolis algo-

rithm consists of varying the temperature during the run. The

so-called simulated-annealing algorithm (Kirkpatrick et al.,
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1983; Czerny, 1985) proceeds by slowly lowering the

temperature, thus moving the walker to (on average) states

with lower and lower energy. The expectation is that if one

proceeds slowly enough the walker will at the end of the run

have reached the global minimum of the energy landscape.

Another well known algorithm is the stochastic quench, where

one performs a Metropolis random walk at zero temperature,

i.e. only steps that lower the energy are being accepted.

Especially if one performs such stochastic quenches from

high-lying states one can gain additional information beyond

that obtained by performing a gradient minimization, because

by repeating the quench from the same starting point for

different random-number sequences one can determine

whether the starting point is associated with only one or

several local minima, i.e. whether it ‘belongs’ to a transition

region or a single basin (Schön et al., 2001a). Such high-lying

states can either be generated at random or represent periodic

stopping points along the trajectories during a Monte Carlo

simulated-annealing or threshold run.

Quite generally, a great advantage of the discrete steps in

stochastic simulated annealing is the large freedom in

choosing a moveclass most appropriate to the type of

exploration being performed. Thus, one can replace the

physically realistic moveclass of moving one or a few atoms by

a small amount by a more optimization-effective moveclass

that allows larger changes in the atom configuration during

each move, in order to explore a larger part of the landscape

during, for example, a global optimization run. In this case it is

sometimes efficient to combine such large moves every time

with a quench.2 Besides the moveclass, there are a number of

other features that can be adjusted to increase the efficiency of

the algorithm (Salamon et al., 2002; Delamarre & Virot, 1998).

The temperature schedule TðnÞ, where n counts the number

of moves along the trajectory, can be optimized; common

schedules consist of an exponential or linear decrease of

temperature with n. Also quite popular are schedules invol-

ving temperature cycling (Möbius et al., 1997, 2004) where the

temperature periodically increases and then decreases again,

and adaptive schedules (Ruppeiner et al., 1991; Salamon et al.,

1988) that take properties of the landscape explored up to now

into account.

Finally, the acceptance criterion can be modified; the most

popular alternatives accept a move according to a Fermi-

function-like distribution [the so-called ‘fast’ annealing (Szu &

Hartley, 1987)], the Tsallis distribution (Tsallis, 1988; Tsallis &

Stariolo, 1996) or based on a temperature-dependent accep-

tance threshold (Dueck & Scheuer, 1990).

3.2. Lid-based algorithms for global optimization and studies
of barrier structure

A rather different line of attack is taken by the lid-based

methods for continuous energy landscapes. Characteristic is

the presence of an energy lid, which denotes the maximal

energy the walker is permitted to have, i.e. any move to a

neighboring configuration with an energy exceeding this value

is rejected. Typically, any move that leads to a state with

energy below this lid is accepted, as if T = 1. However, for

special purposes we have also performed runs below the lid at

constant temperature, usually in order to study the tempera-

ture dependence of the probability flow restricted to a pocket

in the landscape.

One example of a lid-based global optimization technique is

the deluge algorithm (Dueck, 1993), where the energy lid that

must not be crossed during the random walk is slowly lowered

from very high lid values, squeezing the walker into a low-

energy minimum. Another approach employs the threshold

algorithm (Schön et al., 1996) that was originally developed as

an implementation of the lid algorithm (Sibani et al., 1993,

1999; Sibani & Schriver, 1994) for the study of the barrier

structure of continuous landscapes.

Here, one starts with a set of local minima that had been

identified, for example, by stochastic quenches or short

simulated-annealing runs. Using each of these minima as

starting points, for a sequence of fixed energy lids, the walker

is allowed to move below the lid with every move accepted as

in the deluge algorithm, and one checks periodically whether

new local minima have been reached by performing several

quench runs from stopping points along the trajectories below

the current energy lid. In this fashion, one can gain an estimate

of the barrier height between neighboring minima by regis-

tering for which lid value the barrier to a neighboring

minimum can be crossed for the first time. Furthermore, the

likelihood of reaching neighboring minima, or of returning to/

staying inside the starting minimum basin gives us a measure

of the probability flow as a function of energy slice, and yields

a measure of the entropic barriers surrounding a minimum

(Schön et al., 1996; Wevers et al., 1999). This procedure is

repeated for all the original starting minima plus all the local

minima that are being identified during the threshold run

itself.

Besides the probability flow, the density of states is sampled

as a function of energy and lid value. By performing not one

but many quenches at each stopping point along the trajec-

tories, one can determine the size of the transition regions by

identifying the so-called characteristic regions (Schön et al.,

2001a) as a function of energy slice. These characteristic

regions are defined via the probability of reaching a set of

minima from a given stopping point along a trajectory when

one performs many stochastic quenches from the same stop-

ping point.

A great advantage of these lid-based algorithms when

employed as global optimization tools is the fact that they

explore the landscape in a way complementary to the

standard simulated-annealing methods: the latter start from

high energies and proceed downhill while staying approxi-

mately in local equilibrium, and thus they enter basins

containing local minima based on the slope, i.e. the growth

rate, of the local density of states. In contrast, the lid-based

methods enter local minimum regions based on the size

of the basin at a given energy lid. As a consequence, the

distribution of minima found using these two methods is going
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to be different, and minima overlooked using one class of

approaches can be identified by the other type of search

method.

3.3. Identifying locally ergodic regions at non-zero
temperatures

At non-zero temperatures the locally ergodic regions can

contain not only one but several or many local minima. In

order to identify such regions, one proceeds either in a direct

fashion via (long) constant-temperature Monte Carlo simu-

lations, or indirectly by analyzing the set of minima found. The

first approach is more likely to deliver regions encompassing

few minima that are close neighbors on the landscape, while

the second one is more suited when dealing with large multi-

minima regions.

3.3.1. Ergodicity search algorithm. We have developed the

so-called ergodicity search algorithm (Schön, Čančarevič et al.,

2008), where one registers the fluctuation of indicator vari-

ables, for instance the potential energy or the radial distri-

bution function, within time windows during the long (Monte

Carlo) simulations. If the average value of these variables

jumps between two windows by more than the fluctuation, this

suggests the existence of a new locally ergodic region. Next,

swarms of short (Monte Carlo) simulations starting from

points along the trajectory in the time window are employed

to verify whether the system is in local equilibrium in this

region. Finally, long simulations for a number of temperatures

are used to measure the probability flow from the region and

thus the escape time. Unsurprisingly, searching for locally

ergodic regions in this fashion is quite expensive computa-

tionally.

3.3.2. Identifying multi-minima locally ergodic regions via
structure families. Since straightforward Monte Carlo simu-

lations that could directly yield locally ergodic regions

encompassing many local minima are usually too time-

consuming even with empirical potentials, one needs to

proceed more indirectly when trying to identify such regions.

In many chemical systems where such large regions are rele-

vant, one can take advantage of the fact that these systems

exhibit so-called controlled disorder, i.e. the minima show a

high degree of structural similarity and belong to so-called

structure families, where only some degrees of freedom are

disordered while the remaining ones are essentially

unchanged.

Thus, after the determination and local optimization of the

minima, a structural analysis of the minimum configurations

follows, to decide whether we are dealing with solid solutions

or ordered crystalline modifications. The crucial issue is

whether such structure families exist that fulfil three condi-

tions (Schön & Jansen, 2005; Schön et al., 2006): (i) for a given

composition the energies of the members of the family should

be very similar; (ii) there should exist no deeper-lying minima

that do not belong to the family; and (iii) the same structure

family should exist for all (or at least for a wide range of)

compositions. If that is the case, the union of these local

minima can be treated as a large locally ergodic region for

each composition, and the free energy of this solid solution

phase contains an entropy of mixing which favors the solution

over ordered crystalline compounds which correspond to a

single minimum basin on the energy landscape. In the case of

intermetallic solutions, the minimum structures belonging to

such a structure family can be identified by the fact that

structurally they possess the same set of sublattices on which

the atoms can be placed more or less randomly. In the case of

ionic solid solutions, the same overall cation–anion super-

structure is present for many compositions, and the different

types of cations and/or anions are randomly distributed over

the cation or anion positions in the superstructure, respec-

tively.

4. Modular approach to exploring energy landscapes
for rational synthesis planning

4.1. Modular approach

For the practical implementation of the procedure, outlined

in x2, for the identification of locally ergodic regions and the

computation of the phase diagram of a chemical system, we

have developed a modular approach (Schön & Jansen, 1996).

The first step is the determination of as many as possible of

the relevant local minima on the energy landscape as a func-

tion of atom positions and cell parameters, using various

global optimization techniques. This stage is repeated for

many different pressure values and numbers of atoms in the

variable simulation cell. In addition, locally ergodic regions at

non-zero temperatures are identified using the ergodicity

search algorithm.

Next, these configurations are analyzed with respect to their

electronic, geometrical and topological properties, such as

typical oxidation state of the ions, translational and rotational

symmetries of the structure, or the occurrence of typical

local coordination environments.3 Furthermore, duplicates are

eliminated from the set of candidates before the next steps

are taken.

The third step consists of the determination of the energetic

and entropic barriers that surround the local minima, in order

to gain estimates on the kinetic stability of the structure

candidates. As a side effect, additional structure candidates

are identified and the local density of the minimum regions

is sampled.

In a fourth step, the candidates are locally optimized on an

ab initio level, in order to be able to rank them by energy. As

part of this process, the EðVÞ curves are computed for every

hypothetical modification, and possible transitions between

them as a function of pressure can be identified. Again, the

structural features of the optimized structures are analyzed

and the space group of each candidate is determined.

In a fifth step, the phonon spectrum is derived (in the

harmonic approximation), and the free energy is computed for

structural transitions in solids
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each candidate. Furthermore, additional physical quantities

such as the band gap can be computed at this stage.

A sixth step follows, where the set of local minima is

analyzed with respect to the existence of structure families

that might indicate the possibility of controlled disorder in the

system and thus the existence of high-temperature phases with

non-negligible configurational entropy contributions to the

local free energy.

Finally, all the results are put together to derive the

phase diagram of the chemical system, including metastable

phases.4

4.2. Choice of energy function during the global exploration
stage

The first step in trying to identify structure candidates

consists of the choice of a cost function whose minima (or sets

of minima) correspond to chemically and physically reason-

able compounds. In principle, not only the atoms’ positions

and their electronic states but also the shape, size and content

of the simulation cell can be varied as part of the global search.

Thus, the general cost function is the thermodynamic potential

of the grand isobaric ensemble (Schön & Jansen, 1996)

C ¼ Eþ pV �
P

i¼1;Nspec

�iNi; ð7Þ

where
P

i¼1;Nspec
Ni = N, and Nspec is the number of different

types of atoms involved. Ideally, the energy E is computed on

an ab initio level; however, owing to the large amount of

energy calculations required for the global searches, one

commonly employs an empirical energy function. One

potential difficulty encountered is choosing an appropriate

value for the chemical potential �i of species i; typically, we

use the standard enthalpy of formation per atom of the

element. However, experience has shown that it tends to be

more efficient to keep the composition and the number of

atoms fixed during a single global optimization run, and to

repeat the runs for different compositions and numbers of

atoms.

4.2.1. Empirical potentials. When employing an empirical

energy function, we usually choose a simple but robust

potential that has proven to be quite efficient for ionic

systems,

E ¼
P

i¼1;N

EionðiÞ þ
P
i; j

Vij; ð8Þ

where Vij is a Coulomb-plus-Lennard-Jones potential

depending on the charges qi and the distance between atoms

rij = jri � rjj,

Vij ¼
qiqj

4�"0rij

þ "ij

rionðiÞ þ rionð jÞ

rij

� �12

�
rionðiÞ þ rionð jÞ

rij

� �6
( )

:

ð9Þ

Note that the ionic radius depends on the current ionization

state of the atom and thus its value is part of the optimization.

The values of rionðiÞ are averages taken from databases with

ionic structures, and are essentially the only experimental

input into the potential.

The great advantage of this type of potential is that it is

flexible, fast and unprejudiced with respect to the possible

structures and local environments. Nevertheless, it has proven

to be very useful to repeat the global searches on such

empirical energy landscapes with slightly varied parameters

for rion and "ij , in order to be able to access possible outliers

among the candidates on the energy landscape. Of course, it is

clear that this energy function will be less appropriate for

intermetallic systems once one can no longer clearly assign the

ionization states in the compound.5

An alternative is to use potentials that have been fitted to

e.g. ab initio calculations. Of course, this also corresponds to a

restriction of the available landscape, and their use can be

problematic if the potentials are too much tied to the struc-

tures that have been used to fit the parameters. Thus, there

might not be enough flexibility built into the system to exhibit

the full spectrum of chemically reasonable modifications. On

the other hand, the potential often describes the local envir-

onments of the atoms in most modifications quite well, and

the global optimization more quickly reaches the deep-lying

minima.

4.2.2. Ab initio energies. The alternative to the use of

empirical potentials is to employ ab initio energy calculations

at the global optimization stage. In order to be able to do this,

it is necessary to speed up the calculation without losing the

advantages of ab initio calculations.

For the ab initio energy calculations we have employed the

code CRYSTAL2006 (Dovesi et al., 2006). This code uses a

local Gaussian basis set where the basis functions are centered

at the positions of the nuclei. The speed-up of the energy

calculations can be achieved in several ways. Firstly, by

reducing the number of matrix elements (integrals), which can

be achieved by selecting less strict tolerances, which means

that more integrals are discarded, or evaluated on a lower

level of accuracy.

Another way to accelerate the calculations is by reducing

the basis set, for example one may consider omitting polar-

ization functions. Similarly, using less diffuse exponents helps

both to enhance the numerical stability and to speed up

the calculations. Other modifications that can speed up the

computation are, for example, the use of fewer k-points or of

less strict thresholds for the convergence of the self-consistent

field cycles. Finally, the quality of the density-functional grid
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4 As described here, we have excluded the part of the energy landscape where
the liquid state and the structurally amorphous states reside. To explore these
regions, one needs to employ larger simulation cells than the ones typically
used for the identification of crystalline structure candidates. Of course, unless
these phases are included, the part of the phase diagram that can be computed
does not include the temperature region where melting is expected to occur in
the system.

5 This breakdown of the applicability usually shows up in rather unusual
features of the local minima found: for example, the atoms prefer to stay in the
neutral state forming just various dense packings, or auto-ionization takes
place, i.e. it appears to be energetically favorable for two metal atoms of the
same type to form a Mþ–M� pair.



(i.e. the number of grid points) may be reduced, when the

global search is performed on the density-functional level.

An additional complication one encounters during global

explorations of energy landscapes of chemical systems is the

necessity to converge the ab initio calculations for random

atom arrangements, often far away from the experimental

configuration, which is not a trivial task. Note that the main

difficulty is the convergence of the atom configurations at the

beginning of the simulated-annealing run, whereas the struc-

tures at later stages and after the simulated-annealing run has

finished are easy to converge. The main reason is that the

initial configurations resemble a gas, and thus the band

structure is similar to that of localized electrons, with almost

no dispersion, and with a much smaller gap than the final

structure.6

Concerning the choice of the functionals, it turned out that,

for insulators, Hartree–Fock calculations facilitate conver-

gence at even the most unusual geometries. This is due to the

large band gap typical for this method, whereas calculations

with the local density approximation may exhibit severe

convergence problems.

4.3. Global and local optimization

If one searches for crystalline modifications using one of the

global optimization methods described above, one defines the

system as a set of N atoms that are located inside a periodically

repeated simulation cell, where both the atom positions and

charges, and the cell parameters can be varied (Schön &

Jansen, 1996). In the case of a cluster, one nearly always

employs just a fixed large simulation cell, and varies only the

atom positions. Concerning the moveclass, the ratio between

atom movements and exchanges, and cell-parameter varia-

tions is typically about 4 :1.

Two consecutive minimizations are performed after the

simulated-annealing stage: a quench with the same moveclass

and the same level of accuracy for the energy calculations as in

simulated annealing, and subsequently a local optimization,

usually with the CRYSTAL2006 code at a high level of

accuracy. Here, we use analytical gradients for the nuclear

positions (Doll et al., 2001; Doll, 2001) and the unit cell (Doll

et al., 2004, 2006), and the full geometry optimization as

implemented in the present release (Civalleri et al., 2001;

Dovesi et al., 2006), sometimes together with a heuristic

algorithm (Čančarević et al., 2004; Schön, Čančarević &

Jansen, 2004) that employs an automated nested minimization

scheme.

The optimization is usually performed both with the

Hartree–Fock approximation and on the level of several

density functionals. This comparison of the results for

different ab initio methods is necessary in general, in order to

be able to judge the robustness of the candidates found: since

we predict new structures in chemical systems where no

compounds have been synthesized so far, the modifications

found on the basis of the global optimization cannot be

compared with experiment!

4.4. Analysis tools: SFND, RGS, CMPZ

An important step in the modular approach is the analysis

of the results of the global optimization runs. Since the sear-

ches are performed for variable simulation cells with space

group P1, all the local minimum configurations will be

recorded without any symmetry information. Furthermore,

owing to numerical aspects of the algorithms, all these minima

show slight minute deviations from the (highly) symmetric

atom arrangements that correspond to the exact location of

the minimum. Finally, the structures obtained are usually not

given with the standard unit cell. To address this issue, we have

developed two algorithms, SFND (Hundt et al., 1999) and

RGS (Hannemann et al., 1998), which allow us to determine

the symmetries a given periodic structure exhibits within a

prescribed set of tolerances, to idealize the cell parameters and

atom positions to be in agreement with the symmetries

detected, and finally to deduce the correct space group and

transform the structure to standard setting.

A second issue is the need to eliminate duplicates among

many of the local minima produced by the optimization, to

compare the structures found with already known structure

types listed in the Inorganic Crystal Structure Database

(ICSD), and finally to identify structure families by

comparing, for example, the cation–anion superstructures in

multi-cation/anion compounds. To deal with these tasks, we

have developed the CMPZ algorithm (Hundt et al., 2006),

which allows us to compare two arbitrary periodic structures

by generating a mapping of the two infinite periodic atom

arrangements onto one another. As a criterion for similarity,

we measure the deviations between the cell parameters of the

appropriately transformed cells together with the deviations

of the atom positions within these cells. We note that this is a

geometric criterion for similarity, not a topological one. These

algorithms have been implemented in the structure analysis

program KPLOT (Hundt, 1979), which can be employed in an

automated script-driven fashion.

5. Theoretical applications

The examples one finds in the literature under the heading of

‘structure prediction’ can be divided into three different

classes: on the one extreme is the structure determination

where structural information, typically a unit cell and its

content, often together with a powder diffractogram, is known

from experiment. On the other extreme is the unrestricted

structure prediction, where only the stoichiometry but neither

the unit cell nor the number of formula units is known. And if

we only know the general chemical system, i.e. the composi-

tion is not fixed either, structure prediction becomes equiva-

lent to the prediction of the phase diagram of the system.

Between these two extremes lies the case of restricted

structure prediction, for example the prediction of structures

structural transitions in solids
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6 An important advantage of a local basis set is that fewer integrals need to be
computed if the atoms are far apart. In particular, during the initial steps of the
search, where a large volume is enforced, the energy calculations are much
faster than those at smaller volume.



in systems where certain structural elements or local envir-

onments of atoms are pre-defined or assumed at the outset,

such as primary and secondary building units (Mellot-

Draznieks et al., 2002).7 Here, one employs some general

chemical constraints that are quite plausible in the system

under investigation but are, strictly speaking, not admissible in

a true structure prediction. Nevertheless, we count these

restricted searches still as part of structure prediction, since

these restrictions are made based on general chemical

experience, in contrast to the prescription of the unit cell

which implies that at least some powder diffraction data of the

compound are available.

Finally, there is the theoretical treatment of syntheses and

phase transitions. Here, we will present examples for the

optimal control of phase transitions.

5.1. Structure prediction

5.1.1. Alkali metal halides. One of the first ionic systems

whose energy landscape has been investigated (Schön &

Jansen, 1995) in detail using simulated annealing without

recourse to experimental data is NaCl. A large number of

local minima were found on the empirical energy landscape,

and the global minimum of the landscape corresponded to the

experimentally observed rocksalt structure. The structures of

most of the energetically low-lying minima could be identified

with typical AB-structure types like NiAs, PtS, CsCl or spha-

lerite. However, one deep-lying local minimum, denoted

Na½5�Cl½5� (the so-called 5–5 structure type), exhibited a

structure type previously unknown in ionic systems. Here, Naþ

and Cl� were coordinated by Cl� and Naþ, respectively, in a

trigonally bipyramidal fashion, resulting in a topology that

resembled that of hexagonal BN.

The energy barrier stabilizing this structure was only

moderately high (	0.01 eV per atom), suggesting that the

structure might be difficult to synthesize with traditional solid-

state synthesis methods in the NaCl system. Thus it came as a

pleasant surprise when this new predicted structure type was

found experimentally (Haas & Jansen, 1999) as the aristotype

of Li4SeO5, where Li and Se occupy the Na positions and O

the Cl positions in the Na½5�Cl½5� structure, respectively. By now,

this structure type has also been observed during the growth

of ZnO films (Claeyssens et al., 2005).

Analogous global optimizations have been performed since

for all 20 alkali halides (Čančarević et al., 2008) for a wide

range of pressures. Similar to the case of NaCl, many possible

modifications were found that included both well known AB

structure types (rocksalt, NiAs, wurtzite, sphalerite, 5–5, CsCl

etc.) and previously unknown structures.

Finally, simulated annealing was employed to find the

minima of LiF on the ab initio energy landscape at standard

pressure, where both the Hartree–Fock approximation and

density functionals were used to compute the energy (Doll et

al., 2007). The same relevant minima as with the empirical

potential were obtained, including the rocksalt, the wurtzite

and sphalerite, the NiAs, and the 5–5 structure types. This

study served both as a valuable validation of the many land-

scape explorations based on empirical potentials and as a

proof-of-principle for the feasibility of global stochastic

explorations on ab initio energy surfaces.

5.1.2. Sodium nitride Na3N. Another deceptively simple

chemical system where a successful synthesis followed the

prediction is Na3N.8 In several studies (Jansen & Schön, 1998;

Schön et al., 2000, 2001b), the enthalpy landscapes of all alkali

nitrides M3N (M = Li, Na, K, Rb, Cs) were explored with

simulated annealing and the threshold algorithm for a wide

range of pressures. This resulted in a large number of structure

candidates, including, for example, the Li3N, the Li3P, the

Li3Bi, the AuCu3, the Al3Ti, the ReO3 and the UO3 structure

types, plus many previously unknown structure types. Fig. 1

shows a part of the tree graph for the empirical energy land-

scape of Na3N containing some of the most important local

minima. Ab initio calculations using the Hartree–Fock

approximation suggested that for Na3N the most likely
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Figure 1
Excerpt of the tree graph of the energy landscape of Na3N on an
empirical energy level at standard pressure, depicting some of the most
important local minima (Jansen & Schön, 1998; Schön et al., 2000, 2001b;
Fischer & Jansen, 2002b). I-Na3N corresponds to a strongly distorted
Li3Bi structure type with 12(+2)-fold coordination of the nitrogen atoms
by sodium atoms. Experimentally, the ReO3 type (Fischer & Jansen,
2002b), the Li3N, the Li3P and the Li3Bi structure types (Vajenine et al.,
2008, 2009) have all been synthesized, the latter three using high-pressure
experiments starting from the ReO3 type. Furthermore, at intermediary
pressures another modification exhibiting the YF3 type was observed
(Vajenine et al., 2008, 2009) that resembles several structures found as
local minima on the enthalpy landscapes of the alkali nitrides.

7 Primary building units are defined as groups of atoms that exist as
independent groups within a solid or a molecule, and thus the composition of
the system does not change unless one explicitly changes the number of atoms/
building units present. In contrast, secondary building units are groups of
atoms which are typically connected by shared atoms. Thus, for example, the
stoichiometry of the final structure is not fixed from the outset but changes
whenever two atoms belonging to two different secondary building units
merge in order to establish a connection.

8 The inability to synthesize any compound of this composition had for many
decades been hailed as a blatant violation of the homologue rule, since Li3N
can be synthesized directly from the elements at ambient conditions (Brese &
O’Keeffe, 1992).



candidate would be the Li3P type, followed by the Li3N and

the ReO3 type, with the Li3Bi type expected at high pressures.

5.1.3. Alkali metal orthocarbonates M4(CO4), with M = Li,
Na, K, Rb, Cs. The existence of esters of the hypothetic acid

H4(CO4) suggests that its salts, the orthocarbonates, should

also be accessible (Mellot-Draznieks et al., 2002). A promising

approach to synthesize, for example, the alkali metal carbo-

nates would be to apply high hydrostatic pressures during

syntheses to the phase equilibria M2O + M2(CO3)ÐM4(CO4)

(M = alkali metal). Since the hypothetical orthocarbonate

would compete with high-pressure phases of the corre-

sponding regular carbonates plus oxides, it is necessary to

study the parts of the enthalpy surfaces of the M/C/O system

with composition M4(CO4), M2O and M2(CO3) for many

different pressures. In this way, one can theoretically establish

the range of (thermodynamic) stability of the orthocarbonate

phase versus the decomposition into the corresponding oxide

and carbonate as a function of applied pressure.

To achieve this, the enthalpy landscapes of M2O

(Čančarević et al., 2006a), M2(CO3) (Čančarević et al., 2006b)

and M4(CO4) (Mellot-Draznieks et al., 2002; Čančarević et al.,

2007) were investigated for many different pressures using

simulated annealing and an empirical Coulomb-plus-Lennard-

Jones potential. In a first round of global optimizations, indi-

vidual metal, carbon and oxygen atoms were used to describe

atom configurations. After it turned out that the minimum

configurations contained isolated trigonal CO3 and tetra-

hedral CO4 units, the latter at high pressures, a second round

of global optimizations was performed, where CO3 and CO4

units were employed together with the metal atoms. All

structure candidates in these systems were locally minimized

on the ab initio level in the Hartree–Fock approximation.

Next, for each pressure, the thermodynamically stable modi-

fication was determined (together with the transition pres-

sures among the various modifications for each of the

individual systems), and the enthalpy of M4(CO4) was

compared with that of M2O + M2(CO3) as a function of

pressure (Čančarević et al., 2007). It was found that for all

alkali metals there should exist thermodynamically stable

orthocarbonates at sufficiently high pressures, with the most

easily accessible candidates being K4(CO4) and Rb4(CO4)

where the phase equilibrium is expected to switch to the

orthocarbonate from the oxide-plus-carbonate in the range

20–30 GPa.

5.1.4. Global exploration performed on the ab initio level:
boron nitride and calcium carbide. As we have already

described in x5.1.1, LiF was chosen as our first example (Doll

et al., 2007) to prove the feasibility of using ab initio calcula-

tions during the simulated-annealing stage. A significant

extension was the application of simulated annealing to

structure prediction for boron nitride (Doll et al., 2008), where

several kinds of, mostly covalent, contributions to the total

energy are present. The global searches were performed on

both the Hartree–Fock and the density-functional level, using

four formula units. The starting configurations were random

atom arrangements in a large unit cell resembling a gas phase.

The searches with the Hartree–Fock approximation proved to

be considerably faster (by a factor of about four) than the ones

using density-functional theory (DFT)-based energy calcula-

tions, because the former could better handle the task of

converging the electronic structure calculations at low density

for random structures. After the low-lying minima were

identified, local optimizations using standard ab initio toler-

ance parameters followed, where both Hartree–Fock and

density-functional methods were employed.

The BN system is particularly fascinating as a test

system because the experimentally observed modifications

include both layered structures (hexagonal BN) and three-

dimensional networks (wurtzite and sphalerite type). In the

global optimizations, all experimentally observed structure

types were indeed found. In addition, several new modifica-

tions were predicted such as layered structures but with a

stacking order different from the experimentally observed

structure h-BN. Two other very interesting new low-energy

modifications consist of three-dimensional B–N networks,

showing the �-BeO structure and the Al partial structure in

SrAl2 .

The mixed covalent–ionic system CaC2 currently under

investigation represents another challenge, since it would be

very difficult to model a system that tends to form complex

anions of varying size [preferably (C2)2� ions] with empirical

potentials while still retaining the freedom to break up such

C2�
2 units. Again, up to four formula units per simulation cell

were employed, and the optimizations followed the same

procedure and approximations as in the case of boron nitride

and lithium fluoride. The calculations indicate so far that,

besides the experimental structures, a new high-pressure

modification should exist (Kulkarni et al., 2010).

5.1.5. Free-energy landscape as a function of temperature
and pressure for the example of SrO. The free-energy land-

scape of SrO was constructed by combining runs with the

ergodicity search algorithm and the threshold algorithm

for a global exploration of the energy landscape (Schön,

Čančarevič et al., 2008), where an empirical Coulomb-plus-

Lennard-Jones potential served as an energy function. After a

preliminary global optimization of the landscape using

simulated annealing, the local minima identified during the

global optimization were used as starting points for a large

number of threshold runs at several different pressures

(Schön, 2004). This yielded an overview over both the low-

lying local minima on the enthalpy landscapes and the barriers

separating the different modifications. Next, the ergodicity

search algorithm (ESA) was applied at standard pressure, and

for a large number of different temperatures, in order to

identify possible high-temperature phases. The potential

energy and the radial distribution function served as indicator

variables. All the structure candidates found with ESA turned

out to be associated with individual local minima that had

already been detected during the threshold run phase. Finally,

the appearance of the melt phase was observed by checking

the stability of the underlying crystalline lattice of the rock-

salt-type modification (the thermodynamically stable solid

modification of SrO at standard pressure, both according to

the experiment and the calculations) during very long Monte

structural transitions in solids
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Carlo simulations for large simulation cells as a function of

temperature.

In the fourth step, the free energies of the structure

candidates found were computed in the quasi-harmonic

approximation on the empirical potential level, and also on

the DFT-B3LYP level. Combining these free energies as a

function of temperature with the energy barriers computed via

the threshold algorithm resulted in the free-energy landscape

shown in Fig. 2.

5.1.6. Phase diagrams of the quasi-binary mixed alkali
halides. As discussed in x3.3, the crucial issue for the existence

of solid-solution phases is whether so-called structure families

exist among the minima observed for many different compo-

sitions which have essentially the same energy for a given

composition (Schön & Jansen, 2005; Schön et al., 2006). Once

this has been established, one can compute the Gibbs free

energy via the convex hull method (Voronin, 2003) using a

combination of the ideal entropy of mixing and a Redlich–

Kister polynomial ansatz (Redlich & Kister, 1948) for the

enthalpy of mixing.

This approach has been applied to about 20 different quasi-

binary alkali halide systems (Schön et al., 2006, 2007; Pentin et

al., 2007, 2008; Schön, Pentin & Jansen, 2008), where the focus

was on the low-temperature region of the phase diagram since

the solid–liquid region was already known experimentally. The

global landscape exploration for many different compositions

was performed using simulated annealing and a Coulomb-

plus-Lennard-Jones potential for the energy evaluation,

followed by local optimizations using both Hartree–Fock and

DFT methods. In all cases the calculations correctly predicted

whether a solid solution or ordered crystalline modifications

were thermodynamically stable, and for those systems where

the miscibility gap had been measured the computed binodal

was in good quantitative agreement with the experimental

data (Sangster & Pelton, 1987) (the error in the critical

temperatures of the computed miscibility gaps was estimated

to be about 
100 K), as is shown in Fig. 3 for the system

NaBr–LiBr (Schön et al., 2006; Doornhof et al., 1984). For

those systems where crystalline modifications were predicted

to be thermodynamically stable, these agreed with those

already known from experiment, and several additional stable

and metastable compounds could be predicted (Pentin et al.,

2007).

Such global landscape explorations as a function of

composition had also been performed in the 1990s for quasi-

binary systems such as Ca2Si–CaBr2 (Putz et al., 1999a) and

MgF2–MgO (Putz et al., 1998), where solid solutions are not

expected to occur. In these two systems a number of (meta)-

stable phases were predicted, with a very promising one found
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Figure 2
Free-enthalpy landscape of SrO at p = 0 GPa for eight different
temperatures (T = 150, . . . ; 2850 K) (Schön, Čančarevič et al., 2008)
computed using global landscape explorations followed by free-energy
calculations in the quasi-harmonic approximation on the empirical
potential and ab initio level. The energetic contributions to the barriers
stabilizing locally ergodic regions exhibiting different structure types are
given by the energy difference between the minima (black circles) and
transition regions (white circles). Entropic barrier contributions (for a
typical example see, for example, Wevers et al., 1999) are not shown to
avoid overloading the figure.

Figure 3
Low-temperature region of the phase diagram for the system NaBr–LiBr
showing the miscibility gap in the system (Schön et al., 2006). The gap
was computed using global landscape explorations followed by the
determination of free enthalpies employing both Hartree–Fock (black
curve) and DFT–B3LYP (red curve) calculations. The blue curve is a fit to
experimental data (Sangster & Pelton, 1987); the yellow dots are
experimental data points (Doornhof et al., 1984).



at the 1:1 composition of the CaSi2–CaBr2 system, which was

computed to be thermodynamically stable on the Hartree–

Fock level.

5.1.7. LiF clusters. When trying to understand the existence

of the many feasible modifications of crystalline solids, and

trying to develop possible synthesis routes, it is very useful to

study the energy landscape of small- and medium-size clusters

with the same chemical composition. Thus we have performed

extensive global explorations of the ab initio landscape of

clusters in the LiF system up to the size (LiF)8 (Doll et al.,

2010).

Going beyond the search for local minima, a major chal-

lenge is the calculation of the barriers on the landscape on the

ab initio level with the threshold algorithm. We have studied

the landscape of the (LiF)4 cluster using the threshold algo-

rithm and we have obtained the tree graph shown in Fig. 4.

5.2. Structure prediction employing structural restrictions:
complex ions as primary building units

One of the most important types of structural restrictions

on the allowed configuration space during structure predic-

tions is the use of primary building units, i.e. groups of atoms

that exist as individual groups of atoms in the final structure

(e.g. forming a complex ion or a whole molecule). One

drawback is that one cannot a priori correctly assign the

charge distribution of the building unit when computing the

total energy of the test configurations during the random walk.

Unless one can perform the calculation with ab initio energies

or there are very strong arguments favoring a particular

charge distribution, experience has shown that one should

repeat the global searches for different charge distributions in

order to ensure that one does not overlook important struc-

ture candidates.

As an example, we present a study of the energy landscape

of KNO2 (Schön & Jansen, 2001). Here, a NO�2 building unit

was employed during simulated-annealing runs, with geome-

trical data taken from compounds listed in the ICSD. The

charge distribution of the building unit was varied from qðNÞ =

+3 and qðOÞ =�2 to qðNÞ =�1 and qðOÞ = 0. It was found that

the most prominent structure candidates exhibit a distorted

rocksalt structure if one considers only the centers of mass of

the NO2 groups and the potassium atoms. All these minima

taken together constitute a structure family which at elevated

temperatures forms the basis of a large locally ergodic region

that corresponds to a high-temperature phase of the system.

Such an ‘average’ rocksalt structure is also observed experi-

mentally at room temperature for KNO2, where one assumes

either a positional or rotational disorder of the NO2 groups to

be present (Solbakk & Stromme, 1969; Onoda-Yamamuro et

al., 1998). Note that one will never observe such thermal

disorder directly in the global optimizations, since the cost

function always refers to T = 0. Thus, the structures one finds

are always low-temperature structures, which in this case

correspond to some low-symmetry modification of the highly

symmetric high-temperature structure. To identify the high-

temperature phase directly, one needs to perform long-time

molecular dynamics or Monte Carlo simulations, as was done

by Duan et al. (2001), or employ the ergodicity search algo-

rithm. However, it is possible to study the activation barriers

of the rotation of the NO2 units around various axes of the

unit, and one finds that two barriers of about 10 K and about

100 K, respectively, appear to dominate the dynamics (Schön

& Jansen, 2005; Schön, Salamon & Jansen, 2010). This suggests

that at least one intermediary structure with limited rotational

freedom of the NO2 units should exist between the ordered

global minimum and the freely rotating high-temperature

structure. In the experiment, both a low-temperature structure

(in space group P21/c) corresponding to one of the local

minima found on the energy landscape and a structure with

the NO2 units rotating along the threefold axis of the crystal

(space group R3m) at intermediary temperatures have been

found. Our results suggest that there might be a second, not

yet observed, intermediary phase where the NO2 units rotate

along a twofold axis of the structure.

5.3. Structure determination

While the true structure prediction described above is a

fascinating area of fundamental research in crystallography,

chemistry and materials science, a more restricted somewhat

modified application of the same methodology looks ready to

become an invaluable tool in applied crystallography and

solid-state chemistry: structure determination from limited

experimental information using energy landscapes, i.e. the

generation of structure candidates that can be refined using

standard methods.

A number of methods have been developed, such as the

reverse Monte Carlo method (Kaplow et al., 1968; McGreevy,

1997; LeBail, 2000; Mellergård & McGreevy, 1999) or struc-

ture determination using experimental cell information

(Freeman et al., 1993; Catlow et al., 1994; Pannetier et al.,

1990; Belashchenko, 1994). We have introduced a Pareto-

optimization approach, where the cost function modifies the

structural transitions in solids
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Figure 4
Tree graph for the ab initio energy landscape of the (LiF)4 cluster
generated using the threshold algorithm.



energy landscape through an explicit incorporation of

experimental data by adding the difference RB (sometimes

denoted the R value) between the measured Bragg intensities

and those calculated for the current atomic configuration to

the potential energy (Putz et al., 1999b). Here, the structure is

optimized both with respect to the energy and the diffracto-

gram,

E ¼ �Epot þ ð1� �ÞRB ð0 � � � 1Þ: ð10Þ

Besides prescribing the cell parameters, one can include

various additional constraints, e.g. keep the positions of some

of the atoms fixed. In analogy to the restricted structure

prediction, it is also possible to employ rigid or flexible

building units, in particular for dealing with complex ions and

molecules.

This approach has been tested successfully for a large

number of ionic, quasi-ionic and metallic systems (Putz et al.,

1999b; Coelho, 2000; Lanning et al., 2000), where simulated

annealing (Putz et al., 1999b; Coelho, 2000) and genetic

algorithms (Lanning et al., 2000) were used as the global

optimization tool. Typically, simple two-body potentials with

Coulomb and Lennard-Jones terms served as energy func-

tions; such simple potentials were sufficient because the

combination of experimental input and theoretical energy

function delivered a high synergy by eliminating many

unrealistic local minima on the energy landscape. One up-to-

date implementation, the program ENDEAVOUR (Putz,

2000), has already been very successful in ‘real life’ applica-

tions, generating convincing structure candidates for such

different systems as K2CN2 (Becker & Jansen, 2000), sulfur

(Crichton et al., 2001), Na3PSO3 (Pompetzki & Jansen, 2002),

Ag2NiO2 (Schreyer & Jansen, 2002), Ag2PdO2 (Schreyer &

Jansen, 2001), GaAsO4 (Santamarı́a-Pérez et al., 2006),

ammonium metatungstate (Christian & Whittingham, 2008),

the zeolite-like structure Na1�xGe3þz (Beekman et al., 2007),

Tl2CS3 (Beck & Benz, 2009) and BiB3O6 (Dinnebier et al.,

2009).

5.4. Optimal control of phase transitions

In practical studies of phase transitions, one needs to be

aware that there is only a finite time available to perform the

actual transition from phase A to phase B. As a consequence,

one has to perform excess work or generate excess entropy

compared with the infinite-time case where the system can

proceed along a quasi-equilibrium curve in state space. Thus,

one has to employ methods of finite-time thermodynamics and

optimal control to optimize the transition process (Schön,

2009).

This applies not only to experiment but also to the issue of

simulating a phase transition and measuring, for example, the

difference in free energies between the two phases with as

high an accuracy as possible for a finite amount of computer

time (function evaluations). In this case, too, the problem can

be cast as a finite-time thermodynamics problem, and an

optimality criterion be derived that allows the minimization of

the difference between the computed free-energy difference

and the true value.

5.4.1. Optimal control of the gas-to-liquid phase transition.

As the most simple example of an analysis of a phase transi-

tion that is to take place in finite time, we considered the

liquification of one mole of the gaseous phase of a molecular

compound (N2) at constant temperature and standard pres-

sure (Santoro et al., 2007). As temperature, we chose the

boiling temperature at standard pressure, T = Tboil at the

pressure pg = p1g ðT
boilÞ = 1 atm. Thus, the chemical potentials

of the liquid and the gaseous phase are equal, and, if the

process could proceed infinitely slowly, no excess work would

be required. The goal is to perform this liquification within a

finite time � and to adjust the pressure of the system in such a

way that the total amount of external work needed is mini-

mized. The excess work is indicated by the shaded area in

Fig. 5, and its rate of change is given by

dWexc

dt
¼ pg � p1g
� �

ntotal � nlð Þ
kBT

p2
g

dpg

dt
þ

kBT

pg

� vl

 !
dnl

dt

" #
;

ð11Þ

where vl is the amount of volume per particle in the liquid

state, and ntotal is the total number of particles in the system.

We describe the system by its internal pressure pgðtÞ and the

amount of liquid phase nlðtÞ, which have admissible ranges of

values ½ p1g ;1� and ½0; ntotal�, respectively. The control vari-

able is the externally applied pressure paðtÞ, with admissible

range ½ p1g ;1�, and we assume that the internal pressure

reacts instantaneously to variations of the applied pressure,

dpa=dt = dpg=dt. Regarding the cluster size distribution, we

focus for simplicity only on the clusters of critical size by

making the assumption that, once this size has been reached,
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Figure 5
Sketch of the excess work (shaded region) needed to perform a first-order
phase transition within a finite time by applying a pressure in excess of the
equilibrium pressure p1g ðTÞ at a fixed temperature T = Tboil.



on average the clusters will continue to grow. Furthermore, we

employ classical nucleation theory (Zettlemoyer, 1969) to

describe the steady-state rate at which clusters are generated,

J c
ss. This leads to the following evolution equation for the

amount of liquid phase,

dnl

dt
¼ nc

l J c
ss þ
ð4�Þ1=3

ð3vlÞ
2=3

ð2�mkBTÞ1=2
n

2=3
l ð pg � p1g Þ

Z t

0

J c
ss dt 0

	 
1=3

;

ð12Þ

where the first term is the cluster generation rate (nc
l is the

amount of molecules inside a critical cluster), and the second

one is the average cluster growth rate.

Applying standard calculus of variation methods to the

optimization problem, we derive a set of coupled differential

equations, which need to be solved numerically. As a result, we

find for the optimal trajectory paðtÞ = pgðtÞ that one should

rapidly increase the pressure from the standard equilibrium

pressure p1g ðT
boilÞ to an optimal value p�aðt0Þ (t0 = 0 in the limit

of infinitely fast pressure increases) in order to start a burst of

nucleation, followed by a fast decrease of pgðtÞ to slightly

above p1g for the remainder of the allowed time �. Fig. 6 shows

these optimal curves for six different values of � (1 s, . . . ;
105 s) plotted versus the scaled time t 0 = t=�. Table 1 gives the

values of p�aðt0Þ and the excess work as a function of �. As

expected, the amount of excess work required decreases with

increasing available time �; this decrease can be approximated

by a power law.

5.4.2. Optimality criterion for free-energy difference
calculation. One of the most popular ways to compute free-

energy differences between two systems A and B is the adia-

batic procedure proposed by Watanabe & Reinhardt (1990).

Here one proceeds by changing system A into system B along

some route in parameter space. After each step along the

trajectory, one computes the work performed, and then lets

the system relax to equilibrium. After having reached system

B, one follows the trajectory in parameter space in the reverse

direction. Summing up these pieces of work along each of the

two paths yields an upper and a lower bound on the free-

energy difference, respectively. Ideally, one would proceed in a

quasi-equilibrium fashion by taking very small steps along the

trajectory and fully relaxing the system after each step.

However, the computational effort to do so is very large, and

one needs to efficiently allocate the limited computer time

available.

Thus, it is clearly of interest to determine an optimal path in

the sense that one wants to (a) find the optimal trajectory in

parameter space between system A and B, and (b) determine

the optimal step sizes along this trajectory and the length of

time spent on relaxing the system at each parameter value,

such that the difference between the free-energy change �F

and the work W along the path, Ipath = W ��F, is minimal.

Trying to solve this optimal control problem turns out to be

equivalent to a finite-time thermodynamics problem in prob-

ability space, and one can derive a lower bound on the loss of

availability or the generation of excess entropy in the phase

transition by minimizing the thermodynamic path length along

the trajectory in parameter space (Schön, 1996). Taking only

the lowest terms into account, we find that along the optimal

path the quantity Ipath is bounded from below by the ther-

modynamic path length,

Ipath ’ kBT
PN
i¼1

pi � pi�1ð Þ 1=pið Þ pi � pi�1ð Þ

¼
PN
i¼1

�Lið Þ
2
� L2=N: ð13Þ

Here, pi is the equilibrium probability distribution over all

states of the system at step i along the path between A and B,

N is the number of steps along the path, and �Li is the length

of the piece ðpi � pi�1Þ measured in the metric on probability

space kBTð1=piÞ at step i. Note that the equality holds only if

all the individual lengths �Li are equal. Thus, the optimiza-

tion problem is equivalent to determining the path between

the two phases A and B that is minimal measured in the metric

in probability space, and then to allocate the available N steps

in such a fashion that each individual piece has the same

length along the path. Applying this prescription to the

switching of a classical paramagnet with the help of a magnetic

field shows that the thermodynamically optimal route is

clearly preferable to typical heuristic ways of resource allo-

cation.

6. Experimental verification

The second step of planning chemical syntheses consists of

rationally developing a viable path to the desired configura-

structural transitions in solids
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Figure 6
Optimal applied pressure p�aðtÞ versus t 0 = t=� in units of Pa for nitrogen
N2 . � = 1, orange; � = 10, light green; � ¼ 102, green; � ¼ 103, blue;
� ¼ 104, magenta; � ¼ 105, red.

Table 1
Initial pressure p�aðt0Þ and total excess work Wexc as a function of total
available time �.

� (s) p�aðt0Þ (Pa) Wexc (J)

1 259730 5.430
10 251695 5.407
102 244640 5.380
103 238365 5.362
104 232750 5.346
105 227685 5.333



tion, predicted to be either kinetically or thermodynamically

stable. This is a task of intriguing complexity, which includes

monitoring the structural and compositional evolution of the

system under consideration as a function of time. The reac-

tions involved need to proceed spontaneously, and the system

thus follows a descending trajectory on the hyperspace of free

enthalpy. In many instances, such pathways would be a spin-

off of the determination of the free enthalpy landscapes,

addressed above. However, upon approaching the synthesis

target many pathways leading to different modifications

compete, and the final outcome is the result of a bifurcation in

the cluster population in sub- and super-critical nuclei. This

final step in the synthesis of a specific solid is determined by

the kind of nuclei that first reach critical size and start growing.

Therefore, special measures need to be taken to direct the

system into the minimum region corresponding to the desired

configuration. To exert an influence on this decisive final

step would require at least some control of the population

dynamics of transient states occurring in the pre-organization

stage during which the stable (supercritical) nuclei develop.

Regrettably, neither the theoretical treatment nor the

experimental control of such a process has yet reached a

satisfactory level. In our attempts to experimentally realize

metastable predicted compounds we have therefore restricted

ourselves to creating synthesis conditions that would be

particularly suited to preserve metastable configurations, i.e.

employing only low thermal activation.

For this purpose, we have constructed a dedicated experi-

mental setup (see Fig. 7) based on a high-vacuum chamber.

This allows us to evaporate the elements constituting the

desired compound as free atoms and to deposit them on a

cooled substrate (at liquid-nitrogen or at liquid-helium

temperature) in a random spatial distribution. The structural

evolution of this solid reaction mixture, which is very much

reminiscent of the starting configurations for the global

computational exploration of the respective energy landscape,

is monitored as a function of time and temperature.

Amazingly, such mixtures undergo all solid-state reactions at

temperatures far below room temperature, yielding well

crystallized products (Fischer & Jansen, 2002a).

Synthesizing crystalline solids at these low temperatures, i.e.

at such extremely mild thermal conditions, is unprecedented,

and we have, indeed, been able to prepare several metastable

compounds and metastable modifications along this novel

approach. Some characteristics of our low-temperature atomic

beam deposition (LT-ABD) have already become apparent

over the past decade. Obviously, when crystalline nuclei form

inside the amorphous deposit, a shrinkage of volume occurs,

thus generating effective negative pressures on the surfaces of

these nuclei (Fischer, Čančarević et al., 2004). Consequently,

the first structures evolving are the metastable low-density

ones, quite in line with our intention.

Among the most impressive results is the synthesis of the

elusive sodium nitride Na3N in an energetically high-lying

structure, the ReO3 type (Fischer & Jansen, 2002b). Even

more importantly, almost the full set of the most stable

predicted, and published five years in advance, polymorphs of

Na3N (see Fig. 1 and x5.1.2) have recently been realized

(Vajenine et al., 2008, 2009). This impressively documents the

strength of our new rational way for solid-state synthesis, and

this result has attracted a lot of interest, which in part arose

because of generations of solid-state chemists having tried in

vain to synthesize Na3N in the past.

As we have already discussed in x5.1.1, for each of the 20

alkali metal halides numerous polymorphs have been

predicted (Schön & Jansen, 1995; Čančarević et al., 2008). Out

of these, the energetically still low-lying low-density wurtzite-

type configurations have been realized for LiI (Fischer, Müller

& Jansen, 2004; Čančarević et al., 2005), LiBr (Liebold-Ribeiro

et al., 2008) and LiCl (Bach et al., 2009), using our LT-ABD

technique. Fig. 8 shows the typical structural evolution from
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Figure 7
Experimental setup of the low-temperature atom-beam deposition
method (Fischer & Jansen, 2002a).

Figure 8
X-ray powder diffractograms of LiBr deposited via the LT-ABD method,
as a function of temperature (bottom to top: 223, 243, 263, 283, 298 K)
(Liebold-Ribeiro et al., 2008). The line diagram indicates the peaks
corresponding to the wurtzite modification of LiBr.



the amorphous phase (not depicted here) to the metastable

wurtzite and finally to the thermodynamically stable rocksalt

structure for LiBr. It is noteworthy how well developed the

powder diffractograms are in spite of the extremely low

crystallization temperatures.

7. Conclusion

In the preceding sections, we have reviewed the energy

landscape approach to the rational planning of solid-state

syntheses. One pillar is the realization that all feasible

(meta)stable modifications of a chemical system are repre-

sented by the locally ergodic regions of the energy landscape

of the system. We have presented our modular approach to the

identification of such regions, together with the algorithms and

analysis tools we have employed for this purpose for a variety

of systems ranging from ionic compounds over systems where

covalent or mixed covalent–ionic bonding is expected, to

materials that exhibit solid-solution phases. While the first

studies focused on standard pressure and zero temperature

modifications, the thermodynamic space that can now be

explored includes high pressures, elevated temperatures and

variations of composition.

Parallel to this theoretical work, explorations of the land-

scape via the development of new synthesis methods have

taken place that aim at the experimental verification of the

predictions. One class comprises high-pressure experiments,

where, for example, in the case of the alkali metal sulfides Li2S

(Grzechnik et al., 2000), Na2S (Vegas et al., 2001) and K2S

(Vegas et al., 2002) the independent predictions of several

high-pressure phases (Schön et al., 2001b; Schön, Čančarević

& Jansen, 2004) could be confirmed. Similarly, the X-ray

powder diffractogram for the high-pressure phase of Li2O

(Kunc et al., 2005) is in good agreement with the predicted

high-pressure phases (Čančarević et al., 2006b); note that in

both the alkali sulfides and oxides the predicted high-pressure

phases of the remaining compounds Rb2S, Cs2S, Na2O, K2O,

Rb2O and Cs2O still await their experimental verification.

A second class of experiments using the LT-ABD method

described in the preceding section has led to the confirmation

of the existence of competing metastable modifications of the

alkali halides in the wurtzite type for LiBr and LiCl. It appears

to be only a matter of time until, for example, the predicted

5–5 structure type (Schön & Jansen, 1995; Schön, 2004;

Čančarević et al., 2008) that has already been realized as the

aristotype of Li4SeO5 (Haas & Jansen, 1999), and also been

seen in thin films of ZnO (Claeyssens et al., 2005), will also

have become accessible in the alkali halides or perhaps the

earth alkali metal oxides. And, as mentioned above, a

combination of the LT-ABD method and high-pressure

syntheses has resulted in the successful synthesis of four

previously predicted modifications of the elusive sodium

nitride (Fischer & Jansen, 2002b; Vajenine et al., 2008, 2009).

Standing firmly on this solid theoretical and experimental

basis, the time appears to have come to address the third pillar

of the rational planning of solid-state synthesis: the modeling

and optimization of chemical syntheses. For certain types of

syntheses, such as growth of crystals from a melt, or the

generation of new phases via phase transitions upon changes

in temperature and/or pressure, these tasks can be achieved by

analyzing pathways on the energy landscape of the chemical

system alone. In contrast, many typical syntheses involve

additional chemical species, solvents and/or catalysts whose

influence must be taken into account during the modeling

process. But even in the case of pure phase transitions, the fact

that many of these transformations are of first order leads to

technical problems in atomistic modeling, owing to the large

size of the simulations that have to be able to describe nuclei

of critical sizes containing hundreds or even thousands of

atoms.

Thus, it will be necessary to combine models on many time-

and length scales to reach an approximately analytical

description, which then can be analyzed and employed as

input to an optimal control approach aimed at achieving a

specific synthesis outcome.9

The widespread availability of fast computers and clusters

thereof has led in recent years to a rapid increase in the

number of research groups involved both in the prediction of

new compounds and in the atomistic modeling of phase

transitions and other synthesis routes, in particular the

nucleation and growth of crystals from solution (Catlow et al.,

2007). While the success rate of the predictions has steadily

increased with time (and available computer time), not

everyone seems to be conscious of the fact that at each given

temperature and pressure there are many possible metastable

modifications capable of existence. Thus it is crucial not only

to search for the thermodynamic minimum configuration but

also to identify the competing metastable ones, and to esti-

mate their kinetic stability. Once this has been achieved, we

look again towards the second pillar of our approach, the

experimental verification, fully realizing that the challenge to

the experimentalist to develop new low-activation-energy, and

thus kinetically controllable, synthesis routes capable of

producing metastable compounds, is at least as great as the

task for the theorist to predict new compounds and suggest

routes to their synthesis.

The work was funded by the BMBF project 03C0352 and

the Multiscale-Materials-Modeling initiative of the Max

Planck Society.
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